metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.3Dic3, C23⋊2(C3⋊C8), C3⋊2(C23⋊C8), (C22×C6)⋊2C8, (C23×C6).3C4, (C2×C12).227D4, (C22×C12).1C4, (C22×C4).19D6, C6.13(C22⋊C8), C6.16(C23⋊C4), C6.6(C4.D4), (C2×C6).22M4(2), C12.55D4⋊21C2, (C22×C4).4Dic3, C2.1(C12.D4), C23.25(C2×Dic3), C2.3(C12.55D4), C2.1(C23.7D6), C22.4(C4.Dic3), (C22×C12).324C22, C22.23(C6.D4), C22.2(C2×C3⋊C8), (C2×C6).29(C2×C8), (C2×C22⋊C4).1S3, (C6×C22⋊C4).21C2, (C2×C4).159(C3⋊D4), (C2×C6).85(C22⋊C4), (C22×C6).123(C2×C4), SmallGroup(192,84)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.3Dic3
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=c, f2=ce3, ab=ba, ac=ca, eae-1=ad=da, faf-1=abd, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >
Subgroups: 248 in 98 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C23, C23, C23, C12, C2×C6, C2×C6, C22⋊C4, C2×C8, C22×C4, C24, C3⋊C8, C2×C12, C2×C12, C22×C6, C22×C6, C22×C6, C22⋊C8, C2×C22⋊C4, C2×C3⋊C8, C3×C22⋊C4, C22×C12, C23×C6, C23⋊C8, C12.55D4, C6×C22⋊C4, C24.3Dic3
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, Dic3, D6, C22⋊C4, C2×C8, M4(2), C3⋊C8, C2×Dic3, C3⋊D4, C22⋊C8, C23⋊C4, C4.D4, C2×C3⋊C8, C4.Dic3, C6.D4, C23⋊C8, C12.55D4, C12.D4, C23.7D6, C24.3Dic3
(1 7)(2 48)(3 9)(4 38)(5 11)(6 40)(8 42)(10 44)(12 46)(13 19)(14 27)(15 21)(16 29)(17 23)(18 31)(20 33)(22 35)(24 25)(26 32)(28 34)(30 36)(37 43)(39 45)(41 47)
(13 32)(14 33)(15 34)(16 35)(17 36)(18 25)(19 26)(20 27)(21 28)(22 29)(23 30)(24 31)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 37)(10 38)(11 39)(12 40)(13 32)(14 33)(15 34)(16 35)(17 36)(18 25)(19 26)(20 27)(21 28)(22 29)(23 30)(24 31)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 27 10 36 7 33 4 30)(2 32 11 29 8 26 5 35)(3 25 12 34 9 31 6 28)(13 39 22 48 19 45 16 42)(14 44 23 41 20 38 17 47)(15 37 24 46 21 43 18 40)
G:=sub<Sym(48)| (1,7)(2,48)(3,9)(4,38)(5,11)(6,40)(8,42)(10,44)(12,46)(13,19)(14,27)(15,21)(16,29)(17,23)(18,31)(20,33)(22,35)(24,25)(26,32)(28,34)(30,36)(37,43)(39,45)(41,47), (13,32)(14,33)(15,34)(16,35)(17,36)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,37)(10,38)(11,39)(12,40)(13,32)(14,33)(15,34)(16,35)(17,36)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27,10,36,7,33,4,30)(2,32,11,29,8,26,5,35)(3,25,12,34,9,31,6,28)(13,39,22,48,19,45,16,42)(14,44,23,41,20,38,17,47)(15,37,24,46,21,43,18,40)>;
G:=Group( (1,7)(2,48)(3,9)(4,38)(5,11)(6,40)(8,42)(10,44)(12,46)(13,19)(14,27)(15,21)(16,29)(17,23)(18,31)(20,33)(22,35)(24,25)(26,32)(28,34)(30,36)(37,43)(39,45)(41,47), (13,32)(14,33)(15,34)(16,35)(17,36)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,37)(10,38)(11,39)(12,40)(13,32)(14,33)(15,34)(16,35)(17,36)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27,10,36,7,33,4,30)(2,32,11,29,8,26,5,35)(3,25,12,34,9,31,6,28)(13,39,22,48,19,45,16,42)(14,44,23,41,20,38,17,47)(15,37,24,46,21,43,18,40) );
G=PermutationGroup([[(1,7),(2,48),(3,9),(4,38),(5,11),(6,40),(8,42),(10,44),(12,46),(13,19),(14,27),(15,21),(16,29),(17,23),(18,31),(20,33),(22,35),(24,25),(26,32),(28,34),(30,36),(37,43),(39,45),(41,47)], [(13,32),(14,33),(15,34),(16,35),(17,36),(18,25),(19,26),(20,27),(21,28),(22,29),(23,30),(24,31)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,37),(10,38),(11,39),(12,40),(13,32),(14,33),(15,34),(16,35),(17,36),(18,25),(19,26),(20,27),(21,28),(22,29),(23,30),(24,31)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,27,10,36,7,33,4,30),(2,32,11,29,8,26,5,35),(3,25,12,34,9,31,6,28),(13,39,22,48,19,45,16,42),(14,44,23,41,20,38,17,47),(15,37,24,46,21,43,18,40)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6G | 6H | 6I | 6J | 6K | 8A | ··· | 8H | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | ··· | 8 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 12 | ··· | 12 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | - | + | - | + | + | |||||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | S3 | D4 | Dic3 | D6 | Dic3 | M4(2) | C3⋊D4 | C3⋊C8 | C4.Dic3 | C23⋊C4 | C4.D4 | C12.D4 | C23.7D6 |
kernel | C24.3Dic3 | C12.55D4 | C6×C22⋊C4 | C22×C12 | C23×C6 | C22×C6 | C2×C22⋊C4 | C2×C12 | C22×C4 | C22×C4 | C24 | C2×C6 | C2×C4 | C23 | C22 | C6 | C6 | C2 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 8 | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 1 | 1 | 2 | 2 |
Matrix representation of C24.3Dic3 ►in GL8(𝔽73)
72 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
64 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 46 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
23 | 21 | 0 | 0 | 0 | 0 | 0 | 0 |
27 | 50 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 51 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 44 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
G:=sub<GL(8,GF(73))| [72,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[64,0,0,0,0,0,0,0,28,8,0,0,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0],[23,27,0,0,0,0,0,0,21,50,0,0,0,0,0,0,0,0,51,44,0,0,0,0,0,0,0,22,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;
C24.3Dic3 in GAP, Magma, Sage, TeX
C_2^4._3{\rm Dic}_3
% in TeX
G:=Group("C2^4.3Dic3");
// GroupNames label
G:=SmallGroup(192,84);
// by ID
G=gap.SmallGroup(192,84);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,387,100,1123,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=c,f^2=c*e^3,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations